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Supplementary Figures

Supplementary Figure S1. Temporal distribution of the published literature on HbC. PubMed:

n=1,273; ISI: n= 554 and Scopus: n=1,820. All combined after duplicate removal: n=1,963.
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Supplementary Figure S2. Map of the distribution of the randomly selected subsample of

the HbC data points used for the model validation, in Africa. Blue dots: thinned subset

(90%); red circles: holdout subset (10%).
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Supplementary Figure S3. Validation plots comparing the HbC prediction with the observed

allele frequency for the data points from the hold-out subset of the data (n=20). A. Scatter

plot of the observed vs. predicted allele frequency; B. Plot of the observed vs. predicted

quantiles.
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COUNTRY Mean SE Median SE Q25% SE Q75% SE Mean SE Median SE Q25% SE Q75% SE

Algeria 3,837 187 3,439 217 1,839 179 7,119 101 62 3 46 4 15 1 159 12

Angola 2,770 139 1,510 210 257 79 9,539 208 23 2 4 0 0 0 102 10

Benin 40,503 945 41,915 1,031 32,952 1,145 52,400 504 2,004 15 1,892 21 1,188 47 3,200 166

Botswana 3 1 0 0 0 0 11 4 0 0 0 0 0 0 0 0

Burkina Faso 133,533 1,648 131,454 1,499 117,825 156 146,173 3,689 9,830 760 9,592 673 7,258 234 13,259 1,613

Burundi 192 54 132 48 31 12 578 120 0 0 0 0 0 0 1 0

Cameroon 481 116 400 113 146 53 1,127 189 1 0 0 0 0 0 3 0

Cape Verde 3 1 1 0 0 0 10 3 0 0 0 0 0 0 0 0

Central African Republic 53 14 27 10 4 2 187 39 0 0 0 0 0 0 0 0

Chad 1,620 95 1,282 115 390 78 4,183 89 16 1 7 0 1 0 58 5

Comoros 1 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0

Congo 267 28 112 33 21 9 898 25 2 0 0 0 0 0 6 1

Côte d'Ivoire 39,830 1,449 42,277 1,584 27,050 929 64,339 1,566 1,434 41 1,244 68 576 45 2,922 67

Democratic Republic of the Congo 2,354 424 1,813 436 594 208 6,213 584 8 0 2 0 0 0 30 2

Djibouti 5 1 0 0 0 0 18 6 0 0 0 0 0 0 0 0

Egypt 2,817 207 578 200 29 12 12,441 632 28 3 0 0 0 0 64 7

Equatorial Guinea 59 7 38 8 10 3 177 9 0 0 0 0 0 0 1 0

Eritrea 99 18 20 8 1 0 379 73 0 0 0 0 0 0 1 0

Ethiopia 1,647 242 470 173 36 14 6,754 812 10 1 0 0 0 0 21 1

Gabon 361 6 299 12 81 16 838 27 3 0 1 0 0 0 9 1

Ghana 98,589 2,238 98,153 2,309 87,225 2,844 110,939 1,366 4,843 29 4,707 71 3,601 157 6,546 239

Guinea 11,459 397 11,186 385 5,931 73 19,970 842 206 16 162 15 49 4 497 34

Guinea-Bissau 331 23 303 29 108 24 815 9 2 0 1 0 0 0 6 0

Kenya 2,095 301 1,048 308 170 68 7,501 548 8 0 1 0 0 0 29 2

Lesotho 1 0 0 0 0 0 2 1 0 0 0 0 0 0 0 0

Liberia 1,344 40 1,275 51 620 65 2,476 29 8 0 6 0 2 0 21 2

Libyan Arab Jamahiriya 562 51 480 58 173 40 1,313 34 3 0 1 0 0 0 10 1

Madagascar 5 2 0 0 0 0 11 5 0 0 0 0 0 0 0 0

Malawi 24 8 4 2 0 0 97 37 0 0 0 0 0 0 0 0

Mali 92,567 715 79,506 1,147 58,011 2,173 106,112 2,318 4,999 318 4,354 105 2,257 88 9,952 1,472

Mauritania 6,046 139 5,309 166 2,136 44 11,459 168 247 15 145 6 24 2 808 95

Mauritius 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Mayotte 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Morocco 3,979 97 1,878 197 202 62 14,815 600 56 4 7 0 0 0 240 24

Mozambique 17 6 2 1 0 0 68 27 0 0 0 0 0 0 0 0

Namibia 96 8 32 9 3 1 378 14 1 0 0 0 0 0 2 0

Supplementary Table S1: National areal prediction summaries and Monte Carlo standard errors (SE) for AC and CC newborn estimates within the AFRO WHO region

HbC heterozygote newborns (AC) HbC homozygote newborns (CC)

S6
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COUNTRY Mean SE Median SE Q25% SE Q75% SE Mean SE Median SE Q25% SE Q75% SE

Niger 41,833 1,456 40,670 1,567 24,006 779 69,159 1,946 1,425 57 1,196 77 527 44 3,068 43

Nigeria 151,207 4,645 148,423 4,797 112,961 3,061 197,818 6,137 3,407 227 3,099 258 1,822 172 5,948 188

Réunion 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Rwanda 616 135 446 135 129 52 1,554 209 1 0 0 0 0 0 3 0

Sao Tome and Principe 80 1 36 3 3 1 305 13 1 0 0 0 0 0 6 1

Senegal 7,639 95 7,326 51 3,508 196 14,548 525 81 6 56 4 13 0 230 20

Sierra Leone 5,247 140 4,508 102 1,575 97 11,076 531 70 6 40 3 6 0 228 21

Somalia 63 13 11 5 0 0 244 67 0 0 0 0 0 0 0 0

South Africa 15 5 1 0 0 0 61 24 0 0 0 0 0 0 0 0

Sudan 2,818 319 2,074 368 543 179 7,433 310 16 1 4 0 0 0 62 5

Swaziland 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

United Republic of Tanzania 951 186 558 177 123 49 3,033 361 2 0 0 0 0 0 8 0

Gambia 642 19 609 24 302 34 1,138 18 3 0 2 0 1 0 9 1

Togo 25,936 325 29,093 366 23,448 613 35,050 156 1,685 71 1,594 41 989 31 2,702 282

Tunisia 487 64 390 72 136 42 1,140 59 2 0 1 0 0 0 6 0

Uganda 4,097 458 2,721 549 618 221 12,531 364 17 1 4 1 0 0 69 4

Western Sahara 151 1 84 3 13 3 376 18 2 0 1 0 0 0 10 1

Zambia 57 17 23 9 1 0 221 63 0 0 0 0 0 0 0 0

Zimbabwe 10 4 2 1 0 0 40 16 0 0 0 0 0 0 0 0

AFRO region 675,185 7,336 672,117 7,290 642,116 7,535 705,163 7,656 29,385 889 28,703 717 26,027 382 31,958 1,224

S7
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Supplementary Table S2. MCMC output parameter values. Summary statistics presented are the

mean and median values, standard deviation (std), interquartile range (IQR) and 95% Bayesian

credible interval (95 BCI). The scale parameter is measured in units of earth radii. Values are

presented to two significant figures.

Parameter Symbol Mean Median Std IQR 95 BCI

Nugget variance ܸ 0.114 0.109 0.044 0.047 0.146

Amplitude (or partial sill) ߶ 2.574 2.541 0.322 0.347 1.210

Scale (or range) ߠ 0.490 0.493 0.010 0.012 0.037
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Supplementary Methods

Inclusion criteria

Only population samples representative of the local communities were included. Detailed data given

for all the ethnic groups found in the area (based on the information provided in the original source)

were recorded as separate entries but entered as a single population survey in the model. Surveys

targeting only specific ethnic groups (e.g. African Americans in North America) were excluded as in

most cases the proportion of that particular ethnic group in the general population was unknown, as

well as the allele frequency in the other ethnic groups present at the sampling site. Surveys focusing

on hospital patients (e.g. minor ailments, fever or malaria) were also excluded, as they may

represent biased estimates of the frequency in the general population.

When possible, authors were contacted for additional information concerning their studies in order

to obtain missing information necessary to assess the quality of their results. Because of the possible

misidentification of HbC and HbE with commonly used electrophoretic methods1, only studies in

which the identification of HbC appeared unambiguous were included.

No constraints were placed on sample size as, in a model-based geostatistical (MBG) framework

(see below), there is no rational for excluding small sample sizes. This is because, on the one hand

the model weighs the information content of each survey in accordance with a binomial sampling

model, therefore down-weighting the information from very small samples, and on the other hand

the uncertainty in relation to the sample size is explicitly modelled by this technique2. Nevertheless,

case reports were excluded from this study as they did not match our criterion for

representativeness of the local communities.

The number of normal (A or neg) and abnormal (C or pos) alleles observed was used as input for

the model. For example, in a sample of ܰ individuals tested in which ݊, ݊, ݊ were found to be

AA, AC and CC individuals respectively, HbA and HbC allele frequencies are:

=
(2 ∗ ݊) + ݊

2ܰ

=ݍ
(2 ∗ ݊) + ݊

2ܰ

We assumed all populations to be at Hardy-Weinberg equilibrium (HWE)3,4. Although assuming

random mating is inaccurate in most communities in northern Africa due to high consanguinity

levels5, , only scarce data on this factor was available in the data sources used for the present study

and there is currently no consistent database allowing to quantify these factors regionally or globally.

Georeferencing

The geographic location of each survey was determined as precisely as possible using a

georeferencing protocol adapted from Guerra et al.6. Author descriptions of survey sites were used to

locate the sampling sites. Geographic coordinates (in decimal degrees, WGS84) were identified in

various global gazetteers including the Encarta Reference Library 2007 (Microsoft Corporation,

Redmond, WA, USA), Geonames (National Geospatial‐Intelligence Agency.

http://geonames.nga.mil/ggmagaz/) and Global Gazetteer Version 2.2 (Falling Rain Genomics Inc.

http://www.fallingrain.com/world/index.html). Surveys were categorised according to the area that

they represented: points (≤10km2), wide areas (>10 and ≤25km2), and small (>25 and ≤100km2)

or large polygons (>100km2). Polygons were digitised and centroids calculated in GIS software

(ArcView 3.2 and ArcMap 10.0, ESRI Inc., Redlands, CA, USA). A similar method was applied to

surveys which could only be georeferenced to the district (admin2 unit) level. Surveys reported only

to province (admin1 unit) or country (admin0 unit) level were considered to lack sufficient

geographical specificity and were thus excluded. The geographic coordinates (latitude and longitude)

were used as input in the model.
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Bayesian model-based geostatistical framework

a. Model

In this section, we describe our Bayesian spatial model for the HbC allele frequency surface (. ) in

Africa. C takes as its argument an arbitrary location on the Earth’s surface within this continent. The

posterior [ܥ] induces a posterior [ܥܥ] for the HbC disease frequency surface .)ܥܥ ) since, using the

Hardy-Weinberg3,4 assumption that an individual’s two copies of each allele are chosen independently

from a gene pool, (ݔ)ܥܥ = .ଶ(ݔ)ܥ We computed summaries of ,[(ݔ)ܥܥ] such as the mean ((ݔ)ܥܥ)ܧ and

the variance ܸ ,((ݔ)ܥܥ)ݎܽ at each location ,ݔ to produce the maps related to haemoglobin C disease

frequency in newborns.

The model differs from the model employed by Piel et al.7 because, while conducting the analysis

for the current paper, we diagnosed a lack of fit in our previous model that did not have a substantial

effect on the main summaries of interest of the posterior for the allele frequency, but did cause

serious errors in the posterior for homozygotes .[ܥܥ] This point is discussed further below.

The national-level disease burden (ܣ)ܦ in nation ܣ can be computed from ,ܥܥ the birth rate bA in

A and the population density surface N using the areal integral:

(ܣ)ܦ = ∫ ܾܰ(ݔ)(ݔ)ܥܥ݀ܽ


This is a deterministic transformation of ܥܥ and therefore of ,ܥ so theoretically the posterior [ܥ]

induces the posterior [(ܣ)ܦ] . However, for reasons discussed by Patil et al.8, it is prohibitively

expensive to sample from this posterior. We produce approximate samples using a method described

below.

b. Prior

We model ܥ as a non-linear transformation of a Gaussian random field8 (݂. ), plus a random field

.)ߝ ) that associates an independent normally distributed value with each location on the earth’s

surface. Specifically,

(ݔ)ܥ = ݃൫݂ (ݔ) + ൯(ݔ߳)

The link function g maps the random variable (ݔ݂) + ,(ݔ߳) which can be any real number, to the

interval (0,1), so (ݔ)ܥ can be used as a probability or prevalence. We used a non-standard link

function, which is described below.

The prior for f is parameterized so that the constant mean function ܯ (ݔ) = ݉ , and the standard

exponential covariance function (ݕ,ݔ)ݒܥ = ߶ଶexp
|௫ି௬|

ఏ
with amplitude parameter φ and range

parameter ,ߠ with suitable priors assigned to the scalar parameters m, φ and θ:

݉) ) ∝ 1

߶ ∼ ݊ݔܧ ݁݊ ݈ܽݐ݅ (. 1)

ߠ ∼ ݊ݔܧ ݁݊ ܽݐ݅ (݈.1)

݂∼ ܯ)ܲܩ (ݒܥ,

The units of ,ݔ ݕ and ߠ are earth radii, and ݉ and ߮ are unitless. The unstructured component

(ݔ)ߝ is modeled as normally distributed with unknown variance ܸ:

ܸ ∼ ݊ݔܧ ݁݊ ܽݐ݅ (݈. 1)
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(ݔ߳) ݅݅݀
∼
�ܰ ݎ݉ ݈ܽ (ߙ,ܸ,0)

A regional approach was privileged over a global analysis due to the paucity of datapoints outside

the African continent.

c. Likelihood

Adopting the Hardy-Weinberg assumption3,4, if ni individuals are sampled at the i’th observation

location oi (for a total of 2 ݊chromosomes), the probability distribution for the number ݇� of copies of

the HbC allele that will be found is binomial, with probability C(oi):

݇∼ ݊݅ܤ ݉ ݅ܽ (݈2 ݊,ܥ())

d. Flexible link function and empirical Bayesian analysis

The link function ݃ for binomial data is usually taken to be the inverse logit function:

(ݔ)݃ = ݈݃ (ݔ)ଵିݐ݅ =
expݔ

1 + expݔ

Piel et al.7 employed this model. Applying the change of variables formula, the induced prior for

C(x) is:

=൯(ݔ)ܥ൫
1

൫1(ݔ)ܥ − ൯(ݔ)ܥ
ݎ݉ܰ ݈ܽ ൫݈݃ ݉;൯(ݔ)ܥ൫ݐ݅ ,߶ଶ + �ܸ ൯

Note that this is essentially a two-parameter family of probability distributions, since ߮ and ܸ

appear only in the sum.

When we initially attempted to fit Piel et al.’s model to the current dataset and predict ,ܥܥ we

found that, when the local distribution above is fitted in areas where datapoints are highly clustered,

the best fitting values of ݉ and ߶ଶ + ܸ result in implausibly long right-hand tails for the predictive

distribution of prevalence in the next observation at .ݔ Although the standard summary statistics,

including the upper 95% credible interval, were consistent with the local dataset, strikingly high

allele frequencies (ݔ)ܥ (greater than 30%) were predicted with small but practically significant

probability (0.1% or so).

This particular type of lack of fit was not a major issue for predictions of (ݔ)ܥ because the bulk of

the predictive distribution was roughly consistent with the dataset, but the long right-hand tail

translated to an even longer right-hand tail for ,(ݔ)ܥܥ which contained enough mass to skew all of

the standard summary statistics. For example, the predicted mean of (ݔ)ܥܥ in some areas exceeded

5%, which is highest than all but the observed values in the dataset.

To remedy this problem, we attempted several strategies including employing Stukel’s link

function9 in place of the more standard inverse logit, and modelling (ݔ݂) + (ݔ߳) as a skew-Gaussian

process10 rather than the standard Gaussian. The skew-Gaussian approach showed indications that it

would solve the problem, but eliminated the crucial conjugate relationship between (ݔ݂) and

(ݔ݂) + ,(ݔ߳) and we were unable to devise a successful MCMC scheme.

Ultimately, we employed an alternative flexible link function:

ℎ(ݔ) =� Ȼݔ


ଷ

ୀ

݃ = ݈݃ ଵିݐ݅ ° ℎ

We were unable to infer Ȼi jointly with the other model parameters in a fully Bayesian manner

due to poor MCMC mixing, so we adopted an empirical fitting approach inspired by data pre-

processing steps employed in classical geostatistics, which improved the fitting of the model to the
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data. The polynomial coefficients for such function are specific to the dataset. The set of coefficients

used, corresponding to an invertible function and fitting the empirical cumulative distribution function

(CDF) was:

=ݕ ଷݔ0.072328175− + ଶݔ1.105591388 + 0.048698858x + 0.004114882.

e. Empirical Bayesian approach to fitting the polynomial coefficients

For each observation , ( ݊, ݇), we first obtained the posterior expectation of the gene pool-wide

prevalence of HbC with uniform prior density on [0,1]:

=Ƹ
݇+ 1

2 ݊+ ݇+ 2

We discarded values for which 2ni was below 50. Then, we inferred the parameters ݉ and ෨ܸ of

the non-spatial Bayesian model:

(Ƹ) = ෑ
1

పෝ(1 − (పෝ
ݎ݉ܰ ݈ܽ ൫݈݃ ;(పෝ)ݐ݅ ݉, ෨ܸ൯



We then plotted the posterior predictive CDF of ݈݃ (Ƹ)ݐ݅ against its empirical CDF, and fit the

coefficients Ȼ of the cubic polynomial function h to the points using least squares, subject to the

constraint that h must be invertible (or, equivalently, monotone).

In the Bayesian analysis of the full spatial model, the fitted values of Ȼ were taken as known and

fixed. Although this empirical procedure is admittedly informal, the resulting nonstandard link

function did substantially improve the fit of the model to the data.

f. Prior predictive constraint

Epidemiological data on haemoglobin C (HbC) tend to be opportunistic, i.e. relatively abundant in

areas where it is expected to be found (i.e. West Africa), but rare elsewhere, even within Africa.

Finding a carrier in a population survey conducted areas anywhere on this continent is nevertheless

plausible.

Even with the more flexible model for ε(x), the predictive distribution in areas of low data

coverage exhibits long right-hand tails, and the predicted mean value of C(x) in these regions is

surprisingly high. The ideal solution to this problem would be to gather further data on the

prevalence of HbC in areas where data are missing from sources such as health service reports, and

incorporate it in the model. Given the obvious logistical difficulties associated with this ideal approach

and the lack of spatial precision when such data is available, we found it more practical to

supplement the dataset with expert opinion.

Perhaps the best way to incorporate this expert opinion would be as ‘soft data’, as described by

Christakos11 among others. However, producing defensible local pseudo-observations of HbC allele

frequency all but requires the data collection process that we sought to avoid. In addition, using soft

datapoints would increase the number of spatial locations at which the Gaussian random field f has

to be imputed, increasing the computational expense of fitting the model.

As a compromise, we elected to constrain φ, m, and V in such a way that the prior predictive

distribution of C(x), before the data are incorporated, puts probability mass of 1×10-4 or less on

values in excess of .0001. In other words, we constrained 99.99% of the prior predictive probability

mass between allele frequencies of 0% and 0.01%.This constraint arguably induces a lack of fit by

forcing f(x) to depart from its prior mean by many standard deviations in areas where HbC allele

frequency is known to be high; but it does remedy the implausibly high predictive values in some

parts of Africa, and does not seem to adversely affect the fit in other areas.

Multiple combinations of the threshold allele frequency and maximum probability values were

tested in order to assess the performance of the model (not shown). The parameters presented here
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represented to best compromise in terms of i) lowering the prediction in peripheral areas for which

no data was available; ii) visually checking the appearance of summary maps; iii) checking our areal

estimates against existing estimates. This can be seen as an informal way of bringing national

reporting data into the model without incorporating it directly; iv) checking the mean error and mean

absolute error.

g. Fitting the model

The model was fitted using a Markov chain Monte Carlo algorithm12 implemented in the

programming language Python using the Bayesian analysis package PyMC13.

The scalar parameters φ, m, θ and V were updated jointly using Haario, Saksman and

Tamminen’s adaptive Metropolis algorithm14, as implemented by PyMC’s AdaptiveMetropolis step

method. Each value ε(oi) at observation location oi was updated separately using the standard one-

at-a-time Metropolis algorithm. The distribution of the Gaussian random field at the observation

locations, { ,{(݂) is conjugate to the distribution of { (߳) + ,{(݂) so we updated { {(݂) by sampling

from its full conditional distribution. MCMC output parameter values are summarised in

Supplementary Table S2.

h. Mapping procedure

Interpolating spatially sparse survey data to predict an allele frequency across a wide region

results in predictions of which the level of certainty (or uncertainty) varies spatially as a function of

the density, quality, and sample size of survey data available. Spatial heterogeneity of the

frequency, known to be high in some areas for other haemoglobinopathies such as HbS7,15, also

influences this uncertainty. A Bayesian MBG framework16 generates a posterior predictive distribution

rather than a unique value, therefore allowing estimation of the uncertainty of the prediction for each

pixel. In addition to the posterior predictive distributions of HbC allele frequency, HbAC and HbCC

genotype frequencies were also generated directly by the model. Because these are non-linear

functions of the allele frequency, it would be incorrect to produce summary maps of these quantities

from those of allele frequency using GIS software8.

The uncertainty is a crucial measure of the accuracy of the prediction. From the complete range of

possible uncertainty intervals available from the model’s output, we chose here to use the inter‐

quartile range (IQR) of the posterior distribution17, corresponding to a 50% probability. This

corresponds to the mbg-map command of the generic MBG package.

i. Mean vs. median

The output of the model is a full posterior predictive distribution (PPD). A multitude of summary

statistics is therefore available.8 The most common ones are the mean, the mode and the median.

The main advantage of the mean is that it can be used correctly to predict means of other

quantities using GIS software, because the mean of a sum is equal to the sum of the means. The

mean could therefore be used to compare the regional areal prediction with the sum of the national

areal predictions. Because the estimates at national and regional scales were calculated

independently, we did not expect to obtain equal values, but we expected them to be consistent with

the Monte Carlo standard error (SE) obtained from the ten repetitions conducted at each scale. We

therefore used the mean to check the sanity of our independent estimates at national and regional

scales. All the sums of the mean areal estimates corresponding to sub-spatial units fell within the SE

range of spatial units areal estimates.

The main advantage of the median is that it can be used in combination with the interquartile

range to give a better picture of the overall prediction, particularly when the PPD is highly skewed,

and its associated uncertainty. Because the sum of the median is not equivalent to the median of the

sums, important differences can be observed between the regional estimate (AFRO) and the sum of

national estimates. Although counter-intuitive, this is statistically correct in the present context.

j. Model validation



Piel et al – HbC

S14

In addition to the model-based representations of prediction uncertainty provided by the MBG

framework, the model’s predictive ability was quantified by assessing the disparity between the

prediction and the observed allele frequency using a validation subset of the data. Ten percent of the

data (n=20), randomly selected, were held out from the dataset. The model was run in full using the

thinned data set (n=186) to generate HbC PPD for comparison with known values at the locations of

the held-out data (Supplementary Figure S3a). The prediction’s mean error and mean absolute error

were used to assess the model’s overall bias and overall accuracy respectively. The mean error is the

average distance between the actual data points and the predicted values. The absolute mean error

is a measure of the average magnitude of the errors in the predicted values. A procedure was also

implemented to test the extent to which predicted posterior distributions at each location provided a

suitable measure of uncertainty. Working through 100 progressively narrower credible intervals

(CIs), from the 99% CI to the 1% CI, each was tested by computing the actual proportion of held-

out prevalence observations that fell within the predicted CI. In a perfect model, 95% of true values

should fall within the 95% CI predicted at each location, 50% within the 50% CI, and so on. Plotting

these actual proportions against each predicted CI level allows the overall fidelity of the posterior

probability distributions predicted at the held-out data locations to be assessed (Supplementary

Figure S3b). This corresponds to the mbg-validate command of the generic MBG package.

k. Demographic data

Population density is highly variable between pixels within one country. National estimates of

HbC newborns therefore depend on whether areas of high or low frequencies are highly populated or

not. Rather than using crudely averaged data for each country, the use of our contemporary allele

frequency map for Africa combined with high resolution population data allows us to deal with this

issue. Population density data have been described in detail in Balk et al.18 and calculations to adjust

them to 2010 populations explained in Gething et al.19

We focus here on newborns using Hardy-Weinberg assumptions3,4. Assuming random mating and

large population sizes, it is possible to estimate the HbC allele frequency and the proportions of each

genotype (AA, AC and CC) from the number of heterozygote individuals observed in the population

sample20. Conceptually, the number of AC and CC babies born per year can be obtained by

multiplying a function of HbC allele frequency 1)2) − ( and ଶ respectively) by the population living

within the area of interest and the crude birth rate (CBR). Crude birth rates are not consistently

available across Africa at a finer resolution than the country level, hence the use of data from the

United Nations Population Prospects for the 2010-2015 period21.

l. Areal predictions

As described previously8, one needs to be careful when predicting integrals over spatial areas.

Using traditional GIS methods, a researcher having access to a map of HbC allele frequency ((ݔ)ܥ)

and desiring a national proportion of individuals with the CC genotype ,((ݔ)ܥܥ) would take the square

of (ݔ)ܥ and then average the values over the various pixels falling within the country of interest,

weighted by population. This approach has limitations when the map of allele frequency is uncertain.

Squaring the mean map for (ݔ)ܥ does not yield the mean map for (ݔ)ܥܥ and it is impossible to

produce any assessment of the uncertainty of the areal average from summary maps alone8.

To develop a correct procedure for producing predictive distributions for national proportions, we

begin by considering what we would do if we had the true map of HbC allele frequency in hand. As

stated above, the national-level disease burden (ܣ)ܦ in nation ܣ can be computed from ,ܥ the birth

rate ܣܾ in ܣ and the population density surface ܰ using the areal integral:

(ܣ)ܦ = ∫ ܾܰ(ݔ)(ݔ)ܥଶ݀ܽ����������(1)


In reality, the allele frequency map ܥ is unknown. We do not know its exact value, but we have

a posterior distribution [ܥ] for it, from which samples can be drawn. Because applying ݑݍ݁ ݊ݐܽ݅ �1 to

a sample from [ܥ] generates a sample from ,[(ܣ)ܦ] many samples from [ܥ] can be used to build up
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a histogram approximating .[(ܣ)ܦ] Summaries such as the mean, median, variance and credible

intervals can be approximated using these samples.

Although it is mathematically correct, this procedure is impractical to implement. We have an

approximation of [ܥ] in the form of the MCMC trace, but generating samples from it at an

appropriately high resolution is extremely computationally expensive8,22. We use an approximate

procedure based on the fact that, if ଵݖ is a single-element binomial process on ܣ with intensity ݀,

∫ ܽ݀(ݔ)ଶ݀(ݔ)ܥ


∫ ܽ݀(ݔ)݀


= (ଶ(ଵݖ)ܥ)ܧ (2)

Furthermore, if ݖ is an -݈element binomial process on ܽ with intensity ݀,

(ଶ(ଵݖ)ܥ)ܧ = lim
→ஶ

ଵ


� (ݖ)ܥ)݃

ଶ)



ୀଵ

(3)

The expectation of the term inside the limit is equal to the left-hand term, but its variance is

smaller than that of .(ଵݖ)ܥ

The pseudocode for our procedure, based on this approximation, was as follows:

1. Generate an -݈element binomial process on ,ܣ ,ݖ with intensity ܰ.

2. For each value in the thinned MCMC trace for the scalar parameters and the Gaussian

random field ݂ evaluated at the observation locations ,{} { ,{(݂)

 Draw a value for the l-element random vector { {(ݖ݂) from its full conditional

distribution.

 Convert these values to {(ݖ)ܥ} by applying the inverse-logit link function.

 Square these values to obtain a sample for the value of the desired genotype

frequencies (ݖ)ܥ}
ଶ}.

 Compute the arithmetic mean of this sample and store.

This procedure was conducted ten times using ݈= 5,000 and 1,000 spatial points for the regional

and national areal estimates respectively; 10% of the parameter samples in the dynamic trace,

selected at random; and 1,000 iterations. As this resulted in a full PPD for each areal unit of interest,

various parameters could be used to summarize the predicted estimates and their uncertainty. Here,

we used the median and the interquartile range (IQR).

The code used to implement this analysis is freely available at http://github.com/malaria-atlas

project/ibd-world and http://github.com/malaria-atlas-project/generic-mbg.

m. Monte Carlo standard errors

To estimate the Monte Carlo standard error12,16,23 attributable to the use of a set of ݈spatial

locations rather than a high-resolution raster grid, we repeated all computations ten times and

recorded the sample standard deviations of all summaries (mean, median, etc.). The point estimates

that we report were obtained by aggregating the samples from all repetitions. The Monte Carlo

standard errors for the national and regional areal estimates are summarised in Supplementary

Table S1.
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